The tricky part of the solution is to realize how the color is flowing from cell to cell (regions).
We have two types of motifs 0 and 1. I have divided the motifs into 4 regions. In motif - 0 we have
regions 1,2,3,4 and in motif - 1 we have regions 5,6,7,8.
So,we will go from cell to cell and add the major region's area to solution and mark that region visited.
For region 1,4,6,7 we will add PI/4 (Pi*(r^2)/4) and for other regions we will add (4 - PI/2)/2 to
solution.
And about the movement , look at the figure we can't go to any cell from a certain cell
.For example,we can only go upward and left from region 1.Once We are in some cell if it's not
visited (if it's visited we have already added it's area to solution) and it's a valid cell(not out of the boundary) then we add that cell's/region's area to the
solution.
Code : -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | /**************************************** Cat Got Bored *****************************************/ #include <bits/stdc++.h> #define loop(i,s,e) for(int i = s;i<e;i++) //excluding end point #define pb(a) push_back(a) #define sqr(x) ((x)*(x)) #define CIN ios_base::sync_with_stdio(0); cin.tie(0); #define ll long long #define ull unsigned long long #define SZ(a) int(a.size()) #define read() freopen("input.txt", "r", stdin) #define write() freopen("output.txt", "w", stdout) #define ms(a,b) memset(a, b, sizeof(a)) #define all(v) v.begin(), v.end() #define PI acos(-1.0) #define pf printf #define sfi(a) scanf("%d",&a); #define sfii(a,b) scanf("%d %d",&a,&b); #define sfl(a) scanf("%lld",&a); #define sfll(a,b) scanf("%lld %lld",&a,&b); #define mp make_pair #define paii pair<int, int> #define padd pair<dd, dd> #define pall pair<ll, ll> #define fs first #define sc second #define CASE(t) printf("Case %d:\n",++t) // t initialized 0 #define INF 9999999999999 //10e9 #define EPS 1e-9 using namespace std; //Graph Construction int rowMove[9][3]; int colMove[9][3]; const int callRM[] = {0,0,1,1}; const int callCM[] = {0,1,0,1}; int RR,CC; int graph[205][205]; bool visited[205][205]; void graph_init() { rowMove[1][0] = 0; rowMove[1][1] = -1;rowMove[1][2] = 0; colMove[1][0] =-1; colMove[1][1] =0; colMove[1][2] =0; rowMove[2][0] = 0 ;rowMove[2][1] = -1 ;rowMove[2][2] = 1 ; colMove[2][0] = 1 ; colMove[2][1] = 0 ; colMove[2][2] = -1 ; rowMove[3][0] = 0 ;rowMove[3][1] = 1 ;rowMove[3][2] = -1 ; colMove[3][0] = -1;colMove[3][1] = 0;colMove[3][2] = 1; rowMove[4][0] = 0 ;rowMove[4][1] = 1 ;rowMove[4][2] = 0 ; colMove[4][0] =1;colMove[4][1] =0;colMove[4][2] =0; rowMove[5][0] = 0;rowMove[5][1] = -1;rowMove[5][2] = 1; colMove[5][0] = -1;colMove[5][1] = 0;colMove[5][2] = 1; rowMove[6][0] = 0;rowMove[6][1] = -1;rowMove[6][2] = 0; colMove[6][0] =1;colMove[6][1] =0;colMove[6][2] =0; rowMove[7][0] =0;rowMove[7][1] =1;rowMove[7][2] =0; colMove[7][0] = -1;colMove[7][1] = 0;colMove[7][2] = 0; rowMove[8][0] = 0;rowMove[8][1] = 1;rowMove[8][2] = -1; colMove[8][0] = 1;colMove[8][1] = 0;colMove[8][2] = -1; } bool valid(int r,int c) { if(r<1 || r>2*RR || c<1 || c>2*CC) return false; return true; } double area_grid(int r,int c) { int grid_no = graph[r][c]; int g_n = grid_no; if(g_n == 1 || g_n == 4 || g_n == 6 || g_n == 7 ) return ((PI)/4.00000)*1.00000; else return (4.0000000 - (PI/2.000000)*1.000000)/2.0000000; } double area(int r,int c) { if(visited[r][c]) return 0.00000000; if(!valid(r,c)) return 0.00000000; visited[r][c] = true; double partial_area = 0.00000000; for(int i=0; i<3; i++) { int r_pp = r + rowMove[ graph[r][c] ][i]; int c_pp = c + colMove[ graph[r][c] ][i]; partial_area += area(r_pp,c_pp); } return area_grid(r,c) + partial_area ; } int main() { int tc; cin>>tc; int cas = 0; graph_init(); while(tc--) { cin>>RR>>CC; int rrr = 1 ; for(int r = 0; r<RR; r++) { string sss; cin>>sss; int ccc = 1 ; for(int c = 0; c<CC; c++) { if(sss[c]=='0') { int r_p = 2*r + 1; int c_p = 2*c + 1; graph[r_p][c_p] = 1; graph[r_p][c_p+1] = 2; graph[r_p+1][c_p] = 3; graph[r_p+1][c_p+1] = 4; } if(sss[c]=='1') { int r_p = 2*r + 1; int c_p = 2*c + 1; graph[r_p][c_p] = 5; graph[r_p][c_p+1] = 6; graph[r_p+1][c_p] = 7; graph[r_p+1][c_p+1] = 8; } } } /* int i,j; loop(i,1,2*RR+1) { loop(j,1,2*CC+1) { cout<<graph[i][j]; } cout<<endl; } */ //calling inititialization CASE(cas); int Q; cin>>Q; while(Q--) { ms(visited,false); int r_call , c_call; cin>>r_call>>c_call; double ans = 0.00000000; if((r_call%2==0 && c_call%2==1) || (r_call%2==1 && c_call%2==0)) { pf("%.4f\n",ans); continue; } int flag = 0; for(int ii= 0; ii<4; ii++) { int r_t = r_call + callRM[ii]; int c_t = c_call + callCM[ii]; if(!valid(r_t,c_t)) continue; if(graph[r_t][c_t]==2 || graph[r_t][c_t]==3 ||graph[r_t][c_t]==5 ||graph[r_t][c_t]==8) { ans = area(r_t,c_t); flag = 1; break; } } if(flag == 1) pf("%.4f\n",ans); else { for(int ii= 0; ii<4; ii++) { int r_t = r_call + callRM[ii]; int c_t = c_call + callCM[ii]; if(valid(r_t,c_t)) { ans = area(r_t,c_t); pf("%.4f\n",ans); break; } } } } } return 0; } |
No comments:
Post a Comment